Numerical Methods
Some example applications in C++
Introduction

Numerical methods apply algorithms that use *numerical* approximations to solve mathematical problems.

This is in contrast to applying *symbolic analytical* solutions, for example *Calculus*.

We will look at very basic, but useful *numerical* algorithms for:

1. Differentiation
2. Integration
3. Root finding
Taylor’s Expansion

Key to the formulation of numerical techniques for differentiation, integration and root finding is Taylor’s expansion:

\[f(x + h) = f(x) + \frac{h^1}{1!} f'(x) + \frac{h^2}{2!} f''(x) + \frac{h^3}{3!} f'''(x) + \ldots \]

The value of a function at \(x + h \) is given in terms of the values of derivatives of the function at \(x \)

The general idea is to use a small number of terms in this series to approximate a solution.

In some cases we can improve on the solution by iterating the procedure \(\Rightarrow \) ideal task for a computer.
1. Numerical differentiation

Aim

Given a function \(f(x) \), we wish to calculate the derivative \(f'(x) \); that is, the gradient of the function at \(x \).

The Central Difference Approximation, CDA, provides an approximation to this gradient:

\[
CDA = \frac{f(x+h) - f(x-h)}{2h} \approx f'(x)
\]
Proof

\[
\text{CDA} = \frac{f(x+h) - f(x-h)}{2h} \approx f'(x)
\]

Proof:

Taylor’s expansion,

\[
f(x+h) = f(x) + hf'(x) + \frac{h^2 f''(x)}{2!} + \frac{h^3 f'''(x)}{3!} + \ldots
\]

\[
f(x-h) = f(x) - hf'(x) + \frac{h^2 f''(x)}{2!} - \frac{h^3 f'''(x)}{3!} + \ldots
\]

\[
\Rightarrow \text{CDA} = f'(x) + \frac{h^2 f'''(x)}{6} + O(h^4)
\]

i.e \(\text{CDA} \approx f'(x) \)

the error \(\approx \frac{h^2}{6} f'''(x) \).

The approximation improves as the size of \(h \) reduces.

Limited precision in the computer prevents us from making \(h \) very small!
Problem

For the following function, calculate the derivative at $x = 2$

$$f(x) = 2x^3 + 5x$$
Algorithm

1. Define the function:
 \[f(x) = 2x^3 + 5x \]

2. Set the parameters:
 \[x = 2, \ h = 0.01 \]

3 Calculate the CDA:
 \[
 \text{CDA} = \frac{f(x+h)-f(x-h)}{2h}
 \]

4 Output the result.
// Central-Difference Approximation (CDA)
// for the derivative of a function f(x).
// Here, f(x)=2*x^3+5*x, h=0.01, x=2.0.

#include <iostream>
using namespace std;

double f(double x) { return 2*x*x*x + 5*x; }

int main() {
 double x=2.0, h=0.01;
 double cda = (f(x+h)-f(x-h))/(2*h);
 cout << f"'"(" << x << "") = " << cda << endl;
}

Output

\(f'(2) = 29.0002 \)
Verification

The program gives us \(f'(2) = 29.0002 \)

We can verify that this is what we expect:

The function here is \(f(x) = 2x^3 + 5x \)
From calculus we can obtain \(f'(x) = 6x^2 + 5 \)
and so the exact solution for \(f'(2) \) is \(6 \times 2^2 + 5 = 29.0000 \)

We see that the error in the CDA is \(29.0002 - 29.0000 = 0.0002 \)

From analysis of Taylor’s expansion we predict the error in the CDA as \(\approx h^2 f''''(x)/6 \)
\(= 0.01^2 \times 12/6 = 0.0002 \)

Our algorithm is working as predicted.
A more difficult problem

So far the CDA does not look so useful, we have only solved a trivial problem. Let’s try a more difficult function:

$$f(x) = x \times \frac{\log((x + 5)^x)}{2x + 3^x}$$

Evaluate $f'(4)$

Analytical solution

$$f'(x) = \frac{(2x + 3^x)x^2 + (x + 5)(2x + 3^x)x \log(x + 5) - 3^x(x + 5)(x \log(3) - 1) \log((x + 5)^x)}{(x + 5)(2x + 3^x)^2}$$

$$\approx -0.1863498$$
// Central-Difference Approximation (CDA)
// for the derivative of a function f(x).
#include <iostream>
#include <cmath>
using namespace std;

double f(double x) {
 return x*log(pow(x+5,x))/(2*x+pow(3,x));
}

int main() {
 double x=4.0, h=0.01;
 double cda = (f(x+h)-f(x-h))/(2*h);
 cout << "f'(" << x << ") = " << cda << endl;
}

Output

f'(4) = -0.186348

The error is +0.000002
2. Numerical integration

Aim

We wish to perform numerically the following integral:

\[\int_{a}^{b} f(x) \, dx \]

This is simply the area under the curve \(f(x) \) between \(a \) and \(b \).

For example, \(\int_{2}^{4} (5x + 2x^3) \, dx = 150 \)

How can we perform this numerically?
Formulating an algorithm

A first approximation can be obtained by forming a trapezoid.

\[f(x) = 2x^3 + 5x \]

Trapezoid area
\[\frac{1}{2} (f(2)+f(4)) (4-2) = \frac{1}{2} (26+148) (2) = 174. \]

The error in the result is 16%.
An improved approximation can be obtained by forming two trapezoids.

\[\text{Trapezoid area} = \frac{1}{2} \left(f(2)+f(3) \right) (3-2) + \frac{1}{2} \left(f(3)+f(4) \right) (4-3) = 156 \]

\[f(x) = 2x^3 + 5x \]

The error in the result is 4%
Four trapezoids.

Trapezoid area

\[
\begin{align*}
&= \frac{1}{2} (f(2.0)+f(2.5)) (2.5-2.0) + \frac{1}{2} (f(2.5)+f(3.0)) (3.0-2.5) \\
&\quad + \frac{1}{2} (f(3.0)+f(3.5)) (3.5-3.0) + \frac{1}{2} (f(3.5)+f(4.0)) (4.0-3.5) \\
&= 151.5
\end{align*}
\]

\[
\int_2^4 (5x + 2x^3) \, dx = 150
\]

The error in the result is 1%

The error \(\propto \frac{1}{n^2}\) where \(n\) is the number of trapezoids.
Formulating an algorithm

Generalising the procedure:

We want the integral \(\int_{a}^{b} f(x) \, dx \).

First consider approximating with five trapezoids:

\[
A = \frac{h}{2} (f(x_0) + f(x_1)) \\
B = \frac{h}{2} (f(x_1) + f(x_2)) \\
C = \frac{h}{2} (f(x_2) + f(x_3)) \\
D = \frac{h}{2} (f(x_3) + f(x_4)) \\
E = \frac{h}{2} (f(x_4) + f(x_5))
\]

\[
h = \frac{x_5 - x_0}{5} = \frac{b - a}{5}
\]

Let \(f_i = f(x_i) \)

\[
A + B + C + D + E = \text{Extended Trapezoidal Formula (ETF)}.
\]

\[
h \left(f_{0/2} + f_1 + f_2 + f_3 + f_4 + f_{5/2} \right)
\]

For \(n \) intervals

\[
\text{ETF} = h \left(\frac{f_{0/2} + f_1 + f_2 + f_3 + \ldots + f_{n-1} + f_{n/2}}{2} \right)
\]

With \(h = \frac{b - a}{n} \), \(x_i = a + ih, \; i = 0, 1, 2, \ldots, n \)
Algorithm

1. Define the function: \[f(x) = 2x^3 + 5x \]

2. Set the limits of the integral, and the number of trapezoids:
 \[a = 2, \ b = 4, \ n = 100 \]

3. Set \[h = \frac{b-a}{n} \]

4. Calculate the ETF as
 \[\text{ETF} = h \left(\frac{f_a}{2} + f_1 + f_2 + f_3 + \cdots + f_{n-1} + \frac{f_b}{2} \right) \]
 with \[f_i = f(x_i), \quad x_i = a + ih, \quad i = 0, 1, 2, \ldots, n \]

5. Output the result.
// Numerical integration via the Extended Trapezoidal Formula (ETF)
#include <iostream>
using namespace std;

double f(double x) { return 2*x*x*x + 5*x; }

int main() {
 double a=2.0, b=4.0;
 int n=100;
 double h = (b-a)/n;

double etf = (f(a)+f(b))/2;
for (int i=1; i<n; i++) etf = etf + f(a+i*h);
 etf = etf * h;
 cout << "The integral = " << etf << endl;
}

The integral = 150.002
Error = 0.002
A more difficult problem

\[\int_0^\pi x \left(\frac{1}{2} + e^{-x} \sin(x^3) \right)^2 \, dx \]

Visual representation of the integral:

\[\text{integrate } x(0.5 + \exp(-x) \sin(x^3))^2 \text{ from 0 to } \pi \]
Adapt the previous C++ code

```cpp
#include <iostream>
#include <cmath>
using namespace std;

double f(double x) {
    return x * pow(0.5+exp(-x)*sin(x*x*x), 2);
}

int main() {
    double a=0.0, b=M_PI;
    int n=100;
    double h = (b-a)/n;
    double etf = (f(a)+f(b))/2;
    for (int i=1; i<n; i++) etf = etf + f(a+i*h);
    etf = etf * h;
    cout << "The integral = " << etf << endl;
}
```

Output

The integral = 1.46937
The error is +0.00030
3. Root finding

Aim

We wish to find the root x_0 of the function $f(x)$; i.e. $f(x_0) = 0$.

How can we perform this numerically?

There are many ways to do this.
We will implement the Newton-Raphson method....
Formulating an algorithm

Let x_0 be the root of a function $f(x)$, i.e. $f(x_0) = 0$. Let x be an estimate of x_0, and ε be the error in this estimate; i.e. $\varepsilon = x - x_0$ or $x_0 = x - \varepsilon$.

If we can obtain a good estimate of ε, then we can improve our root estimate iteratively:

$$x_{i+1} = x_i - \varepsilon_i$$
Obtaining an error estimate:

Taylor's expansion:
\[
0 = f(x_0) = f(x - \varepsilon) \\
= f(x) - \varepsilon f'(x) + \frac{\varepsilon^2 f''(x)}{2!} - \frac{\varepsilon^3 f'''(x)}{3!} + \cdots
\]

dropping $O(\varepsilon^n)$ terms gives

\[
0 \approx f(x) - \varepsilon f'(x) \\
\Rightarrow \varepsilon \approx \frac{f(x)}{f'(x)}
\]

The algorithm so far:

1. define $f(x)$ and $d(x)$
2. Initialise x
3. Iterate:
 \[
 e = \frac{f(x)}{d(x)} \\
 x = x - e
 \]
4. Output x

But how many iterations?
We have an estimate of the error

\[\varepsilon \approx \frac{f(x)}{f'(x)} \]

Use this to form a termination condition that requires 6 decimal place accuracy:

“iterate until \(\varepsilon < 10^{-9} \)”

Algorithm

1. define \(f(x) \) and \(d(x) \)
2. initialise \(x \)
3. iterate:
 \[e = \frac{f(x)}{d(x)} \]
 if \(\varepsilon < 10^{-9} \) terminate
 \[x = x - e \]
4. Output \(x \)

Example

\[f(x) = 2x^3 + 5 \]

\[x = -\sqrt[3]{\frac{5}{2}} \approx -1.357208808297 \]
// Newton-Raphson method for the root of f(x)
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

double f(double x) { return 2*x*x*x + 5; }
double d(double x) { return 6*x*x; }

int main() {
 cout << setprecision(9) << fixed;
 double e, x = -1.5;

 while (true) {
 e = f(x)/d(x);
 cout << "x = " << x << endl;
 if (fabs(e)<1.0e-6) break;
 x = x - e;
 }
}
Output

\[x = -1.500000000 \]
\[x = -1.370370370 \]
\[x = -1.357334812 \]
\[x = -1.357208820 \]

The number of correct digits *doubles* on every iteration (rapid convergence)!

7 decimal place accuracy
Finally
In this lecture we have looked at *Numerical Methods*.

More about numerical methods can be found at: